Structure of a pre-mRNA branch point/3' splice site region.

نویسندگان

  • K B Hall
  • M R Green
  • A G Redfield
چکیده

We have analyzed the solution structure of RNA containing the branch point/3' splice site region of the first intervening sequence (IVS1) of human beta-globin pre-mRNA by nuclease mapping and NMR. Nuclease mapping indicates that there are two distinct structural domains: one contains the branch point region, and the other includes the 3' splice site and second exon sequences. In the branch point domain, the adenosine at which the RNA branch forms appears to be in the loop of a stem/loop structure. The branch point structure does not appear to interact with other parts of the RNA, since its unique nuclease digestion pattern is conserved among transcripts containing the entire intron or only the branch point region. This is confirmed by a comparison of the NMR spectra of two RNA transcripts; a distinct set of resonances appears in the spectra of the RNA containing only branch sequences or including 3' splice site/exon 2 sequences. NMR studies further show that the 3' splice site/exon 2 domain has a lower melting temperature than the branch point domain, suggesting that the two regions are distinct dynamically as well as structurally. Nuclease mapping studies of adenovirus major late IVS1 indicate that this RNA has structural features in common with the human beta-globin transcript.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the branch site/3'-splice site region in adenovirus-2 E1A pre-mRNA alternative splicing: evidence for 5'- and 3'-splice site co-operation.

The adenovirus E1A gene encodes five overlapping mRNAs which are processed by alternative RNA splicing from a common pre-mRNA. To characterize cis-acting sequence elements which are of importance for the alternative 5'-splice site selection deletion and substitution mutants within the intron that is common to all E1A mRNAs were constructed. Deletion of the wild-type E1A branch site/polypyrimidi...

متن کامل

Wobble splicing reveals the role of the branch point sequence-to-NAGNAG region in 3' tandem splice site selection.

Alternative splicing involving the 3' tandem splice site NAGNAG sequence may play a role in the structure-function diversity of proteins. However, how 3' tandem splice site utilization is determined is not well understood. We previously demonstrated that 3' NAGNAG-based wobble splicing occurs mostly in a tissue- and developmental stage-independent manner. Bioinformatic analysis reveals that the...

متن کامل

In vivo commitment to splicing in yeast involves the nucleotide upstream from the branch site conserved sequence and the Mud2 protein.

Pre-mRNA splicing is a stepwise nuclear process involving intron recognition and the assembly of the spliceosome followed by intron excision. We previously developed a pre-mRNA export assay that allows the discrimination between early steps of spliceosome formation and splicing per se. Here we present evidence that these two assays detect different biochemical defects for point mutations. Mutat...

متن کامل

Unusual branch point selection involved in splicing of the alternatively processed Calcitonin/CGRP-I pre-mRNA.

To study splice site selection in alternative RNA processing we used the human Calcitonin/CGRP-I (CALC-I) gene. Expression of the CALC-I gene in thyroid C-cells results predominantly in calcitonin (CT) mRNA (containing exons 1 to 4) whereas CGRP-I mRNA (containing exons 1,2,3,5 and 6) is the exclusive product in particular nerve cells. We previously reported that a model precursor RNA containin...

متن کامل

Characterization of a U2AF-independent commitment complex (E') in the mammalian spliceosome assembly pathway.

Early recognition of pre-mRNA during spliceosome assembly in mammals proceeds through the association of U1 small nuclear ribonucleoprotein particle (snRNP) with the 5' splice site as well as the interactions of the branch binding protein SF1 with the branch region and the U2 snRNP auxiliary factor U2AF with the polypyrimidine tract and 3' splice site. These factors, along with members of the S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 3  شماره 

صفحات  -

تاریخ انتشار 1988